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a b s t r a c t

In this research study, model predictive control (MPC) utilizing multiple reduced-models running in series
is developed and studied to investigate an improved temperature-control performance of an exothermic
batch reactor. Three steps of batch-model construction are presented, which involve (i) a reference-profile
determination, (ii) an operating-condition selection and (iii) a model-reduction. Different pseudo steady-
states conditions are properly selected along the closed-loop reference profiles with regards to overall
closed-loop poles of the system. The models further individually determined their minimal-phases to
attain only controllable and observable states. Consequently, different model-orders can be chosen cor-
responding to their controllability and observability. Simulation results have shown that, in a nominal
odel-reduction

ultiple models case, the proposed controller provides control performances as good as a single-model based controller
does. However, in presences of plant/model mismatches, the reduced-controller provides much better
and more robust control performances.
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. Introduction

The temperature control of a batch reactor with exothermic
eactions normally consists of (i) initial heating-up the reactor tem-
erature from an ambient condition, and (ii) maintaining it at the
esired value. Heating is initially required for driving the system
o reach the desired operation as quickly as possible; this is to
educe overall cycle-time of a reaction process. Afterwards, cool-
ng is used to keep the temperature at its set point. It can be seen
hat switching from heating to cooling always provide the diffi-
ulty of batch temperature control. As heat-released of reactions
n a heating period may become very large very quickly, the reac-
ions can become unstable, and cause the temperature to runaway
f the heat-generated exceeds the cooling capacity of the reactor.
herefore, a careful control of change rate of the temperature and
inimization of temperature overshoot are required.
Traditionally, a dual-mode control strategy has been employed

o solve this type of problem. In industrial practices, an on–off

ype strategy is commonly implemented consisting of applying

aximum heating (on) until the reactor temperature is within
specified range of set point (heating mode), and then switch-

ng to maximum cooling (off) to bring the change rate of the

∗ Corresponding author. Tel.: +66 2 2186892; fax: +66 2 2186877.
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emperature to zero (cooling mode). Alternatively, a standard
eedback-controller can be switched on in the second mode [16].
evertheless, as an optimal switching criterion from heating to
ooling has been determined in off-line fashion, it is only valid
or a specific range of operating conditions. Moreover, heating pro-
eeds in an open-loop manner, no feedback from the reactor is used
switched-off controller), for that reason there is no allowance for

odeling errors.
To overcome the problem of the open-loop strategy, many

dvanced-control techniques have been proposed and studied to
ontrol batch reactors, such as feedforward–feedback control [8],
terative learning control [4], etc. In addition to these, several works
ave focused on the development of effective estimators to provide
he estimates of heat-released of reactions in a feedback-control
ramework, i.e. an extended Kalman filter [1,10,11], neural network
3] and dynamic data reconciliation [9].

In industrial applications, model predictive control (MPC), an
ptimization model-based controller, has achieved great successes
14]. Most of commercially available MPC products have utilized
inear-model; this is because non-linear-MPC (using non-linear-

odel) performs computational complexity and convergence

roblem of an optimization [6]. The attempt to handle highly non-

inear behavior of the linear-MPC has been addressed in many
tudies.

One of those, an idea of a global-model has been concentrated
2,7,12,15]. A set of models running in parallel has been weighted

hts reserved.
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ig. 1. (a) Conventional framework. (b) Proposed framework. Model predictive con-
rol (MPC) control frameworks.

ia using a weighting function to provide the global-model, which
s further used in a traditional MPC algorithm to calculate a set of
ontrol moves. It has been reported in literatures that the selection
f proper number of models and weighting function have shown to
e an important issue.

This work is mainly focused on the feedback-control design of a
PC controller for further improvement of a temperature-control

erformance over an entire batch operation. The controller has
een developed by using multiple-models running in series to cope
ith whole batch-dynamic changes. The modeling strategy has

een motivated by the fact that a batch reactor goes through a series
f phases with substantially different characterizations. The models
n a state-space form have been further determined their minimal
hases individually [13,17,18] to eliminate uncontrollable and/or
nobservable states, which may causes poor control performances.

t is noted that the reduced state-space models can be developed
irectly through empirical data by a subspace state-space identi-
cation method, in which a model-reduction approach is readily
uilt-in [5].

. A proposed model predictive control

The basic idea of a MPC controller is to determine a set of control
oves over a control-horizon by minimizing some criteria subject

o a process-model and input/output constraints. The first value
f the controls is then applied to the process. In a formulation of
conventional controller, a single model in a state-space form, as

hown in Eq. (1), is used to provide an output prediction and to
btain process performance optimization (Fig. 1a).

ẋ = Ax + Bu
ym = Cmx

(1)
here u, ym are vectors of process inputs and measurable outputs,
espectively.

Nevertheless, in high non-linearity and non-stationary appli-
ations such a batch process, the controller with a single model

c

t
g
a

ng Journal 145 (2008) 129–134

as proven in literatures to give poor control performance. This
s because it is rarely possible to describe entire batch-dynamics

ith only one local-model due to time-varying behavior by nature.
he capabilities of the conventional controller will degrade as
n operating level moves away from an original design level of
peration.

.1. Multiple reduced-models development

Multiple reduced-models are developed around different
seudo-steady-states operating conditions, and utilized sequen-
ially in the proposed control strategy to cope with the entire batch
ynamics. Here, the batch process is divided into a certain period
nm), in which the model j is employed to describe the system
ynamics within a particular duration tj−1 < t ≤ tj.

As state-controllability and -observability is commonly varied
long a batch operation, the models should reduce their orders
ndividually to avoid uncontrollable and/or unobservable states,

hich may cause poor control performances. In this study, a set
f the reduced-models are obtained by applying the following two
teps: system diagonalization and determination of minimum real-
zation. Similar diagonal systems are firstly determined for simply
dentifying truncated-states. Subsequently, pole-zero cancellation
s applied to provide minimum phases of the models.

By applying those steps, the reduced-model can be formulated
s

ẋr
j

= Ar
j
xr

j
+ Br

j
u

ym = Cmr
j

xr
j

(2)

here Ar
j
= ϑj

(
ς−1

j
Ajςj

)
nr×nr

ϑ−1
j

, Br
j
= ϑj

(
ς−1

j
Br

j

)
nr×nu

, Cmr
j

=

Cm
j

ςj

)
ny×nr

ϑ−1
j

, in which (nu) and (ny) are numbers of pro-

ess inputs and outputs, respectively. The symbol (·)nr×nr denotes
he matrix that only first (nr) rows and columns are consid-
red, in other words, the last (nx − nr) states are truncated. The
atrices ς and ϑ are transform matrices in diagonalization, and
inimum-realization steps, respectively. Noted that the matrix

ς−1
j

Ajςj

)
is diagonal, in which its elements are eigenvalues of the

atrix Aj.

.2. A control framework

A control framework of the proposed control-scheme is shown
n Fig. 1b. The MPC formulation is established in which multiple
educed-models are employed sequentially for predicting future
ehavior of the process-outputs. Afterward the optimization prob-

em is solved using a quadratic programming (QP). Noted that the
P method can be implemented directly when original full-states
odels are used.
As the models further reduce their orders individually, this pro-

ides multiple reduced-models with different orders (according
o their controllability and observability) and state-domains. State
ransformation is required to give prediction consistency and con-
inuity. It is also noted that although all reduced-models have same
rders, the transformation is still needed because of different state-

oordinates.

The transform matrix, Kj can be determined with the assump-
ion that, at a model switching time (k), two considered models
ive same predicted values of both original full-states and measur-
ble outputs. This is to preserve the primary direction of the states
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Fig. 2. Schematic diagram of a batch reactor.

stimates of the current model j.

Cx
j

Cmr
j

]
xr

j,k
∼=

[
Cx

j+1
Cmr

j+1

]
xr

j+1,k (3)

From Eq. (3), the matrix Kj is,

j =
(

CT
j+1Cj+1

)−1
CT

j+1Cj (4)

here Cj =
[

Cx
j

Cmr
j

]
. The obtained transform matrix is solely depen-

ent on a system matrix C of the two adjacent models, in other
ords, it is independent of the instant time.

To formulate a quadratic optimization problem, the reduced-
tates of the other models used in the controller are replaced with
he correlation equation of those reduced-states and xr

j
(current

odel j); for example, xr
j+1 = (Kj)xr

j
, xr

j+2 = (Kj+1Kj)xr
j
, and so on.

omparing to the conventional MPC scheme, two additional steps
re required which involves models specification, and states trans-
ormation. Now a whole batch behavior can be described using a
et of local-models sequentially, even the models are developed in
ifferent state coordinates.

. An exothermic batch reactor

.1. Process description

A batch system consists of a batch reactor and a jacket heat-
ng/cooling system as shown in Fig. 2, in which two parallel
xothermic reactions occur in liquid phase as below:

+ B → C and A + C → D

here A, B are raw materials, and C, D are desirable and undesirable
roducts, respectively. Further details of the system are given in
ppendix A.

For this system, the reaction rates must be controlled to limit a
roduction of D by heating reactor temperature (Tr) from its initial
alue to a desired set point rapidly and maintaining it at this con-
ition. The optimal Tr of 95 ◦C is chosen in this case. A jacket inlet
emperature (Tjsp) is used as a manipulated input, and can be regu-
ated by a heat exchanger. To reflect the actual process, it is assumed
hat the ability of the jacket system is limited in a temperature range
etween 20 and 120 ◦C by heat-exchanger capacity.

.2. Model-construction
As discussed above, a batch control problem involves time-
arying and high non-linear behavior, non-stationary operating
onditions, and uncontrollable and/or unobservable states. There-
ore, three steps of linear time-invariant model construction have
een proposed in order to manage the problems as shown in Fig. 3.

t
t
t

t

Fig. 3. Linear time-invariant (local) model construction steps.

Since dynamic behavior of the batch process is non-stationary,
here is no steady-state operating condition needed for local lin-
arization. So as to deal with this limit, reference closed-loop
rofiles have been firstly determined. After that, a set of models is
btained by linearizing an original non-linear fundamental-model
round different pseudo steady-state operating conditions chosen
n different parts along the reference profiles. To meet their con-
rollability and observability, the models have been further reduced
heir orders individually.

. Simulation results

In this study, reference closed-loop profiles have been obtained
s shown in Fig. 4a by applying an adaptive MPC controller. Its tun-
ng parameters including input weighting, a prediction horizon, and
control horizon, are 0.5, 30, and 20, respectively. Heating period is
pproximately between 0 ≤ t ≤ 17.1 min, to provide maximum heat-
ng resulting in raising-up Tr as quickly as possible from initially
0 to 95 ◦C. After that at t ≥ 17.1 min (cooling period), the controller
tarts cooling the temperature down to bring its change rate to zero,
nd to limit the production of the by-product.

After 20.5 min, the temperature control is performed subse-
uently for maintaining the temperature change rate near zero. This
rings two unstable poles to left-half-plane (LHP) as seen in Fig. 4b.
n other words, the process dynamics regarding the reactor temper-
ture gradually move from unstable to stable responses. It is found
hat the system behavior becomes more stable at t > 61.3 min (all
egative poles, Re{�}< 0).

.1. Conventional MPC controller

It is noted that heating-up is inevitable, so therefore a switching
ime from heating to cooling is a critical point of any designed con-
rollers. An effectively designed control of the temperature change
ate is then expected within this range. For developing the con-
entional controller, the pseudo steady-state operating condition
s chosen only in a stable part, 61.3 < t ≤ 120 min, to provide stable
ontroller. Three operating conditions are chosen here to represent

he dynamics of the system for the whole operating range: (i) at
ime t = 80 min, (ii) at time t = 100 min, and (iii) at the final batch
ime t = 120 min.

The studied batch system has two zero-, two positive- and
wo negative-value poles (six full states); hence, it is analytically
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Fig. 5. Control performances of three conventional controllers.
ig. 4. (a) Control performances of an adaptive MPC controller: reference profiles.
b) Control performances of an adaptive MPC controller: poles of the batch system.

nstable. The two zero-value poles can be cancelled by a pole-
ero cancellation, this results in a minimal phase of the model
ith four reduced-states. The cancellation can be obviously seen by
sing process transfer-function. As controllability and observability
atrices of the batch have four ranks, a further model-reduction is

ot needed in this case.
Fig. 5 shows a comparison of control performances of three

onventional controllers using different minimal-order models. It
as been found that, one with the model derived at time 100 min
rovides the smallest IAE (integral absolute error: IAE = 760). For
ne with the model derived at time 120 min, the largest over-
hoot is remarkably observed (IAE = 784). Furthermore, one with
he model derived at time 80 min provides the slowest control
esponse (IAE = 803). It should be noted that the controller with
he model derived at t < 80 min provides sluggish response, and is
ather sensitive to mismatches.

.2. Proposed MPC controller
As seen in Fig. 5, the conventional controller with the model
eveloped at time 80 min provides good control response at the
eginning without overshoot, approximately 0–30 min. After that,
he control response slightly deviates out of the set point, but is

Fig. 6. (a) Controller with two reduced-models in series: control performance. (b)
Controller with two reduced-models in series: a sequence of using two models.
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Fig. 7. Closed-loop profiles with heat transfer coefficient change.

nally driven back to the set point. In order to improve the perfor-
ance, two reduced-models running in series are then employed

n the controller algorithm.
The control performance of the controller with a sequence of

wo reduced-models, which are derived at time 80 and 120 min,
s shown in Fig. 6a. It can be seen that the control response after
0 min is significantly improved via using the second model. As
ampling time is of 0.1 min, the output prediction is achieved 3 min
head for each MPC calculation. A sequence of using the models
s plotted with time as shown in Fig. 6b. For t < 27 min, the first

odel is used in the proposed controller. After that both models
re employed in time range 27–30 min, because the prediction hori-
on covers both models. This is followed by using only the second
odel, t ≥ 30 min.
The proposed MPC have also been examined by increasing the

umber of the reduced-models, however, it has been found that
he control performance is rarely improved. This is because the
table period is limited in the range of 61.3–120 min, and the sta-
le poles change negligibly. Accordingly, the temperature-control
erformance can be significantly improved by using only two
inimal-models sequentially.

.3. Effect of plant/model mismatch

As the controller is a model-based controller, it needs to be
ested for robustness with respect to plant/model mismatches.
ig. 7 shows the responses of both conventional and proposed
ontrollers, when heat transfer coefficient decreases 30% from
ts nominal value. The results show that the controller using

wo minimal-models sequentially still provides reasonable control
esponse, whereas the conventional one cannot handle this mis-
atch. The IAE values of both controllers in the presence of the
ismatch are summarized in Table 1.

able 1
AE values of both controllers in the presence of model mismatches

30% Heat transfer coefficient +30% Rate constant

o. of models Integral absolute
error (IAE)

No. of models Integral absolute
error (IAE)

Unstable 1 865.0
1018 2 760.0

p

A

F

A

Fig. 8. Closed-loop profiles with rate constant change.

Similarly, kinetic data in rate equations may not be known
xactly. Here, it is assumed that the rate constant of the first reac-
ion increases 30% from its actual value. The proposed controller
s still able to cope with this mismatch. The reactor temperature
s maintained at the desired value (95 ◦C) with smaller overshoot
omparing to the conventional one as shown in Fig. 8.

. Conclusion

It has been well known that model predictive control (MPC)
echnology has been widely used in an industrial application.
owever, a conventional controller is rarely applicable to batch pro-
esses. This is because of non-stationary operating condition, which
s needed for a local-model development. To manage the problem,
hree steps of a model construction have been proposed involving,

reference-profile determination, an operating-condition selec-
ion, and a model-reduction. Simulation results have shown that
he conventional MPC controller with a reduced-model, developed
y follows the steps, gives reasonable temperature-control perfor-
ance. However, it is rather sensitive to plant/model mismatches.
To improve the control performance, a sequence of two reduced-

odels has been employed in a MPC framework to cope with
ime-varying behavior of the process. Full-models have been con-
tructed around different pseudo-steady-state conditions along
eference profile. Afterward they reduced their orders individually
orresponding to their controllability and observability. Simula-
ion results have demonstrated that MPC with two reduced-models
unning in series provides much better and more robust control
erformances than the conventional one.
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ppendix A
Table A.1.

Reaction 1: A + B → C
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Table A.1
Physical properties and initial conditions

Mwa = 30 kg/kmol Mwb = 100 kg/kmol

Mwc = 130 kg/kmol Mwd = 160 kg/kmol

Cpa = 75.31 kg/(kmol ◦C) Cpb = 167.36 kg/(kmol ◦C)

Cpc = 75.31 kg/(kmol ◦C) Cpd = 334.73 kg/(kmol ◦C)

k1
1 = 20.9057 k2

1 = 10, 000

k1
2 = 38.9057 k2

2 = 17000

�H1 = −41,840 kJ/kmol �H2 = −25,105 kJ/kmol

�r = 1000 kg/m3 r = 0.5 m

Ur = 40.842 kJ/(min m2 ◦C) �j = 1000 kg/m3

Cpj = 1.8828 kJ/(kg ◦C) Fj = 0.348 m3/min

Vj = 0.6812 m3 Mb(0) = 12 kmol

Ma(0) = 12 kmol Md(0) = 0 kmol

M ◦

T

w

k
M
+
−

R

[

[

[

[

[

[

[
reactor, in: Twentieth Annual ISA Conference, vol. 10, Los Angeles, CA, 1965, pp.
4–7.

[17] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and
c(0) = 0 kmol Tj(0) = 20 C

r(0) = 20 ◦C

Reaction 2: A + C → D

dMa
dt

= −R1 − R2

dMb
dt

= −R1

dMc
dt

= R1 − R2

dMd
dt

= R2

dTr

dt
= Qr + Qj

MrCpr
dTj

dt
=

Fj�jCpj(T
sp
j

− Tj) − Qj

Vj�jCpj

[

ng Journal 145 (2008) 129–134

here R1 = k1MaMb, R2 = k2MaMc, k1 = exp
[
k1

1 − k2
1/(Tr+273.15)

]
,

2 = exp
[
k1

2 − k2
2/(Tr + 273.15)

]
, Wr = MwaMa + MwbMb + MwcMc +

wdMd; Cpr = [CpaMa + CpbMb + CpcMc + CpdMd]/Mr; Mr = Ma + Mb
Mc + Md; Vr = Wr/�r; Ar = 2Vr/r; Qj = UrAr(Tj − Tr); Qr = − �H1R1
�H2R2.
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